32 research outputs found

    A note on the gap between rank and border rank

    Get PDF
    We study the tensor rank of the tensor corresponding to the algebra of n-variate complex polynomials modulo the dth power of each variable. As a result we find a sequence of tensors with a large gap between rank and border rank, and thus a counterexample to a conjecture of Rhodes. At the same time we obtain a new lower bound on the tensor rank of tensor powers of the generalised W-state tensor. In addition, we exactly determine the tensor rank of the tensor cube of the three-party W-state tensor, thus answering a question of Chen et al.Comment: To appear in Linear Algebra and its Application

    The asymptotic spectrum of graphs and the Shannon capacity

    Full text link
    We introduce the asymptotic spectrum of graphs and apply the theory of asymptotic spectra of Strassen (J. Reine Angew. Math. 1988) to obtain a new dual characterisation of the Shannon capacity of graphs. Elements in the asymptotic spectrum of graphs include the Lov\'asz theta number, the fractional clique cover number, the complement of the fractional orthogonal rank and the fractional Haemers bounds

    On the orthogonal rank of Cayley graphs and impossibility of quantum round elimination

    Get PDF
    After Bob sends Alice a bit, she responds with a lengthy reply. At the cost of a factor of two in the total communication, Alice could just as well have given the two possible replies without listening and have Bob select which applies to him. Motivated by a conjecture stating that this form of "round elimination" is impossible in exact quantum communication complexity, we study the orthogonal rank and a symmetric variant thereof for a certain family of Cayley graphs. The orthogonal rank of a graph is the smallest number dd for which one can label each vertex with a nonzero dd-dimensional complex vector such that adjacent vertices receive orthogonal vectors. We show an exp(n)(n) lower bound on the orthogonal rank of the graph on {0,1}n\{0,1\}^n in which two strings are adjacent if they have Hamming distance at least n/2n/2. In combination with previous work, this implies an affirmative answer to the above conjecture.Comment: 13 page

    Asymptotic tensor rank of graph tensors: beyond matrix multiplication

    Get PDF
    We present an upper bound on the exponent of the asymptotic behaviour of the tensor rank of a family of tensors defined by the complete graph on kk vertices. For k4k\geq4, we show that the exponent per edge is at most 0.77, outperforming the best known upper bound on the exponent per edge for matrix multiplication (k=3k=3), which is approximately 0.79. We raise the question whether for some kk the exponent per edge can be below 2/32/3, i.e. can outperform matrix multiplication even if the matrix multiplication exponent equals 2. In order to obtain our results, we generalise to higher order tensors a result by Strassen on the asymptotic subrank of tight tensors and a result by Coppersmith and Winograd on the asymptotic rank of matrix multiplication. Our results have applications in entanglement theory and communication complexity

    The border support rank of two-by-two matrix multiplication is seven

    Get PDF
    We show that the border support rank of the tensor corresponding to two-by-two matrix multiplication is seven over the complex numbers. We do this by constructing two polynomials that vanish on all complex tensors with format four-by-four-by-four and border rank at most six, but that do not vanish simultaneously on any tensor with the same support as the two-by-two matrix multiplication tensor. This extends the work of Hauenstein, Ikenmeyer, and Landsberg. We also give two proofs that the support rank of the two-by-two matrix multiplication tensor is seven over any field: one proof using a result of De Groote saying that the decomposition of this tensor is unique up to sandwiching, and another proof via the substitution method. These results answer a question asked by Cohn and Umans. Studying the border support rank of the matrix multiplication tensor is relevant for the design of matrix multiplication algorithms, because upper bounds on the border support rank of the matrix multiplication tensor lead to upper bounds on the computational complexity of matrix multiplication, via a construction of Cohn and Umans. Moreover, support rank has applications in quantum communication complexity

    The asymptotic induced matching number of hypergraphs: balanced binary strings

    Get PDF
    We compute the asymptotic induced matching number of the kk-partite kk-uniform hypergraphs whose edges are the kk-bit strings of Hamming weight k/2k/2, for any large enough even number kk. Our lower bound relies on the higher-order extension of the well-known Coppersmith-Winograd method from algebraic complexity theory, which was proven by Christandl, Vrana and Zuiddam. Our result is motivated by the study of the power of this method as well as of the power of the Strassen support functionals (which provide upper bounds on the asymptotic induced matching number), and the connections to questions in tensor theory, quantum information theory and theoretical computer science. Phrased in the language of tensors, as a direct consequence of our result, we determine the asymptotic subrank of any tensor with support given by the aforementioned hypergraphs. In the context of quantum information theory, our result amounts to an asymptotically optimal kk-party stochastic local operations and classical communication (slocc) protocol for the problem of distilling GHZ-type entanglement from a subfamily of Dicke-type entanglement

    Nondeterministic quantum communication complexity: the cyclic equality game and iterated matrix multiplication

    Get PDF
    We study nondeterministic multiparty quantum communication with a quantum generalization of broadcasts. We show that, with number-in-hand classical inputs, the communication complexity of a Boolean function in this communication model equals the logarithm of the support rank of the corresponding tensor, whereas the approximation complexity in this model equals the logarithm of the border support rank. This characterisation allows us to prove a log-rank conjecture posed by Villagra et al. for nondeterministic multiparty quantum communication with message-passing. The support rank characterization of the communication model connects quantum communication complexity intimately to the theory of asymptotic entanglement transformation and algebraic complexity theory. In this context, we introduce the graphwise equality problem. For a cycle graph, the complexity of this communication problem is closely related to the complexity of the computational problem of multiplying matrices, or more precisely, it equals the logarithm of the asymptotic support rank of the iterated matrix multiplication tensor. We employ Strassen's laser method to show that asymptotically there exist nontrivial protocols for every odd-player cyclic equality problem. We exhibit an efficient protocol for the 5-player problem for small inputs, and we show how Young flattenings yield nontrivial complexity lower bounds

    A note on the gap between rank and border rank

    Get PDF
    We study the tensor rank of a certain algebra. As a result we find a sequence of tensors with a large gap between rank and border rank, and thus a counterexample to a conjecture of Rhodes. We also obtain a new lower bound on the tensor rank of powers of the generalized W-state

    Tensor rank is not multiplicative under the tensor product

    Get PDF
    The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general multiplicative under the tensor product. This answers a question of Draisma and Saptharishi. Specifically, if a tensor t has border rank strictly smaller than its rank, then the tensor rank of t is not multiplicative under taking a sufficiently hight tensor product power. The "tensor Kronecker product" from algebraic complexity theory is related to our tensor product but different, namely it multiplies two k-tensors to get a k-tensor. Nonmultiplicativity of the tensor Kronecker product has been known since the work of Strassen. It remains an open question whether border rank and asymptotic rank are multiplicative under the tensor product. Interestingly, lower bounds on border rank obtained from generalised flattenings (including Young flattenings) multiply under the tensor product
    corecore